Cross-Modal Enhancement and Benchmark for UAV-based Open-Vocabulary Object Detection (2509.06011v1)
Abstract: Open-Vocabulary Object Detection (OVD) has emerged as a pivotal technology for applications involving Unmanned Aerial Vehicles (UAVs). However, the prevailing large-scale datasets for OVD pre-training are predominantly composed of ground-level, natural images. This creates a significant domain gap, causing models trained on them to exhibit a substantial drop in performance on UAV imagery. To address this limitation, we first propose a refined UAV-Label engine. Then we construct and introduce UAVDE-2M(contains over 2,000,000 instances and 1800 categories) and UAVCAP-15k(contains over 15,000 images). Furthermore, we propose a novel Cross-Attention Gated Enhancement Fusion (CAGE) module and integrate it into the YOLO-World-v2 architecture. Finally, extensive experiments on the VisDrone and SIMD datasets verify the effectiveness of our proposed method for applications in UAV-based imagery and remote sensing.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.