DRDCAE-STGNN: An End-to-End Discrimina-tive Autoencoder with Spatio-Temporal Graph Learning for Motor Imagery Classification (2509.05943v1)
Abstract: Motor imagery (MI) based brain-computer interfaces (BCIs) hold significant potential for assistive technologies and neurorehabilitation. However, the precise and efficient decoding of MI remains challenging due to their non-stationary nature and low signal-to-noise ratio. This paper introduces a novel end-to-end deep learning framework of Discriminative Residual Dense Convolutional Autoencoder with Spatio-Temporal Graph Neural Network (DRDCAE-STGNN) to enhance the MI feature learning and classification. Specifically, the DRDCAE module leverages residual-dense connections to learn discriminative latent representations through joint reconstruction and classifica-tion, while the STGNN module captures dynamic spatial dependencies via a learnable graph adjacency matrix and models temporal dynamics using bidirectional long short-term memory (LSTM). Extensive evaluations on BCI Competition IV 2a, 2b, and PhysioNet datasets demonstrate state-of-the-art performance, with average accuracies of 95.42%, 97.51%, and 90.15%, respectively. Ablation studies confirm the contribution of each component, and interpreta-bility analysis reveals neurophysiologically meaningful connectivity patterns. Moreover, despite its complexity, the model maintains a feasible parameter count and an inference time of 0.32 ms per sample. These results indicate that our method offers a robust, accurate, and interpretable solution for MI-EEG decoding, with strong generalizability across subjects and tasks and meeting the requirements for potential real-time BCI applications.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.