Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compression Beyond Pixels: Semantic Compression with Multimodal Foundation Models (2509.05925v1)

Published 7 Sep 2025 in cs.CV, cs.IT, and math.IT

Abstract: Recent deep learning-based methods for lossy image compression achieve competitive rate-distortion performance through extensive end-to-end training and advanced architectures. However, emerging applications increasingly prioritize semantic preservation over pixel-level reconstruction and demand robust performance across diverse data distributions and downstream tasks. These challenges call for advanced semantic compression paradigms. Motivated by the zero-shot and representational capabilities of multimodal foundation models, we propose a novel semantic compression method based on the contrastive language-image pretraining (CLIP) model. Rather than compressing images for reconstruction, we propose compressing the CLIP feature embeddings into minimal bits while preserving semantic information across different tasks. Experiments show that our method maintains semantic integrity across benchmark datasets, achieving an average bit rate of approximately 2-3* 10(-3) bits per pixel. This is less than 5% of the bitrate required by mainstream image compression approaches for comparable performance. Remarkably, even under extreme compression, the proposed approach exhibits zero-shot robustness across diverse data distributions and downstream tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.