Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancing the Robustness of Contextual ASR to Varying Biasing Information Volumes Through Purified Semantic Correlation Joint Modeling (2509.05908v1)

Published 7 Sep 2025 in cs.CL, cs.SD, and eess.AS

Abstract: Recently, cross-attention-based contextual automatic speech recognition (ASR) models have made notable advancements in recognizing personalized biasing phrases. However, the effectiveness of cross-attention is affected by variations in biasing information volume, especially when the length of the biasing list increases significantly. We find that, regardless of the length of the biasing list, only a limited amount of biasing information is most relevant to a specific ASR intermediate representation. Therefore, by identifying and integrating the most relevant biasing information rather than the entire biasing list, we can alleviate the effects of variations in biasing information volume for contextual ASR. To this end, we propose a purified semantic correlation joint modeling (PSC-Joint) approach. In PSC-Joint, we define and calculate three semantic correlations between the ASR intermediate representations and biasing information from coarse to fine: list-level, phrase-level, and token-level. Then, the three correlations are jointly modeled to produce their intersection, so that the most relevant biasing information across various granularities is highlighted and integrated for contextual recognition. In addition, to reduce the computational cost introduced by the joint modeling of three semantic correlations, we also propose a purification mechanism based on a grouped-and-competitive strategy to filter out irrelevant biasing phrases. Compared with baselines, our PSC-Joint approach achieves average relative F1 score improvements of up to 21.34% on AISHELL-1 and 28.46% on KeSpeech, across biasing lists of varying lengths.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.