Towards Meta-Cognitive Knowledge Editing for Multimodal LLMs (2509.05714v1)
Abstract: Knowledge editing enables multimodal LLMs (MLLMs) to efficiently update outdated or incorrect information. However, existing benchmarks primarily emphasize cognitive-level modifications while lacking a focus on deeper meta-cognitive processes. To bridge this gap, we introduce CogEdit, a novel benchmark designed to evaluate MLLMs' meta-cognitive knowledge editing abilities across three levels: (1) Counterfactual-Driven Editing, assessing self-awareness of knowledge correctness changes; (2) Boundary Constraint Editing, ensuring appropriate generalization without unintended interference; and (3) Noise-Robust Editing, promoting reflective evaluation of uncertain information. To advance meta-cognitive editing, we propose MIND (Meta-cognitive INtegrated Dynamic Knowledge Editing), a framework that constructs a meta-knowledge memory for self-awareness, employs game-theoretic interactions to monitor knowledge activation, and incorporates label refinement for noise-robust updates. Extensive experiments show that MIND significantly outperforms existing cognitive editing approaches, achieving strong performance on both traditional and meta-cognitive knowledge editing benchmarks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.