Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sensitivity-Aware Post-Training Quantization for Deep Neural Networks (2509.05576v1)

Published 6 Sep 2025 in cs.CV

Abstract: Model quantization reduces neural network parameter precision to achieve compression, but often compromises accuracy. Existing post-training quantization (PTQ) methods employ iterative parameter updates to preserve accuracy under high compression ratios, incurring significant computational complexity and resource overhead, which limits applicability in resource-constrained edge computing and real-time inference scenarios. This paper proposes an efficient PTQ method guided by parameter sensitivity analysis. The approach prioritizes quantization of high-sensitivity parameters, leveraging unquantized low-sensitivity parameters to compensate for quantization errors, thereby mitigating accuracy degradation. Furthermore, by exploiting column-wise clustering of parameter sensitivity, the method introduces a row-parallel quantization framework with a globally shared inverse Hessian matrix update mechanism, reducing computational complexity by an order of magnitude. Experimental results on ResNet-50 and YOLOv5s demonstrate a 20-200-fold quantization speedup over the Optimal Brain Quantization baseline, with mean accuracy loss below 0.3%, confirming the method's efficacy in balancing efficiency and accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.