Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cloning a Conversational Voice AI Agent from Call\,Recording Datasets for Telesales (2509.04871v1)

Published 5 Sep 2025 in cs.AI and cs.LG

Abstract: Recent advances in language and speech modelling have made it possible to build autonomous voice assistants that understand and generate human dialogue in real time. These systems are increasingly being deployed in domains such as customer service and healthcare care, where they can automate repetitive tasks, reduce operational costs, and provide constant support around the clock. In this paper, we present a general methodology for cloning a conversational voice AI agent from a corpus of call recordings. Although the case study described in this paper uses telesales data to illustrate the approach, the underlying process generalizes to any domain where call transcripts are available. Our system listens to customers over the telephone, responds with a synthetic voice, and follows a structured playbook learned from top performing human agents. We describe the domain selection, knowledge extraction, and prompt engineering used to construct the agent, integrating automatic speech recognition, a LLM based dialogue manager, and text to speech synthesis into a streaming inference pipeline. The cloned agent is evaluated against human agents on a rubric of 22 criteria covering introduction, product communication, sales drive, objection handling, and closing. Blind tests show that the AI agent approaches human performance in routine aspects of the call while underperforming in persuasion and objection handling. We analyze these shortcomings and refine the prompt accordingly. The paper concludes with design lessons and avenues for future research, including large scale simulation and automated evaluation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.