Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Learning Active Perception via Self-Evolving Preference Optimization for GUI Grounding (2509.04243v1)

Published 4 Sep 2025 in cs.CV and cs.AI

Abstract: Vision LLMs (VLMs) have recently achieved significant progress in bridging visual perception and linguistic reasoning. Recently, OpenAI o3 model introduced a zoom-in search strategy that effectively elicits active perception capabilities in VLMs, improving downstream task performance. However, enabling VLMs to reason effectively over appropriate image regions remains a core challenge in GUI grounding, particularly under high-resolution inputs and complex multi-element visual interactions. In this work, we propose LASER, a self-evolving framework that progressively endows VLMs with multi-step perception capabilities, enabling precise coordinate prediction. Specifically, our approach integrate Monte Carlo quality estimation with Intersection-over-Union (IoU)-based region quality evaluation to jointly encourage both accuracy and diversity in constructing high-quality preference data. This combination explicitly guides the model to focus on instruction-relevant key regions while adaptively allocating reasoning steps based on task complexity. Comprehensive experiments on the ScreenSpot Pro and ScreenSpot-v2 benchmarks demonstrate consistent performance gains, validating the effectiveness of our method. Furthermore, when fine-tuned on GTA1-7B, LASER achieves a score of 55.7 on the ScreenSpot-Pro benchmark, establishing a new state-of-the-art (SoTA) among 7B-scale models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.