Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

COBRA: Multimodal Sensing Deep Learning Framework for Remote Chronic Obesity Management via Wrist-Worn Activity Monitoring (2509.04210v1)

Published 4 Sep 2025 in cs.CE and cs.LG

Abstract: Chronic obesity management requires continuous monitoring of energy balance behaviors, yet traditional self-reported methods suffer from significant underreporting and recall bias, and difficulty in integration with modern digital health systems. This study presents COBRA (Chronic Obesity Behavioral Recognition Architecture), a novel deep learning framework for objective behavioral monitoring using wrist-worn multimodal sensors. COBRA integrates a hybrid D-Net architecture combining U-Net spatial modeling, multi-head self-attention mechanisms, and BiLSTM temporal processing to classify daily activities into four obesity-relevant categories: Food Intake, Physical Activity, Sedentary Behavior, and Daily Living. Validated on the WISDM-Smart dataset with 51 subjects performing 18 activities, COBRA's optimal preprocessing strategy combines spectral-temporal feature extraction, achieving high performance across multiple architectures. D-Net demonstrates 96.86% overall accuracy with category-specific F1-scores of 98.55% (Physical Activity), 95.53% (Food Intake), 94.63% (Sedentary Behavior), and 98.68% (Daily Living), outperforming state-of-the-art baselines by 1.18% in accuracy. The framework shows robust generalizability with low demographic variance (<3%), enabling scalable deployment for personalized obesity interventions and continuous lifestyle monitoring.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.