AutoPBO: LLM-powered Optimization for Local Search PBO Solvers (2509.04007v1)
Abstract: Pseudo-Boolean Optimization (PBO) provides a powerful framework for modeling combinatorial problems through pseudo-Boolean (PB) constraints. Local search solvers have shown excellent performance in PBO solving, and their efficiency is highly dependent on their internal heuristics to guide the search. Still, their design often requires significant expert effort and manual tuning in practice. While LLMs have demonstrated potential in automating algorithm design, their application to optimizing PBO solvers remains unexplored. In this work, we introduce AutoPBO, a novel LLM-powered framework to automatically enhance PBO local search solvers. We conduct experiments on a broad range of four public benchmarks, including one real-world benchmark, a benchmark from PB competition, an integer linear programming optimization benchmark, and a crafted combinatorial benchmark, to evaluate the performance improvement achieved by AutoPBO and compare it with six state-of-the-art competitors, including two local search PBO solvers NuPBO and OraSLS, two complete PB solvers PBO-IHS and RoundingSat, and two mixed integer programming (MIP) solvers Gurobi and SCIP. AutoPBO demonstrates significant improvements over previous local search approaches, while maintaining competitive performance compared to state-of-the-art competitors. The results suggest that AutoPBO offers a promising approach to automating local search solver design.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.