Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

VulnRepairEval: An Exploit-Based Evaluation Framework for Assessing Large Language Model Vulnerability Repair Capabilities (2509.03331v1)

Published 3 Sep 2025 in cs.SE and cs.CR

Abstract: The adoption of LLMs for automated software vulnerability patching has shown promising outcomes on carefully curated evaluation sets. Nevertheless, existing datasets predominantly rely on superficial validation methods rather than exploit-based verification, leading to overestimated performance in security-sensitive applications. This paper introduces VulnRepairEval, an evaluation framework anchored in functional Proof-of-Concept (PoC) exploits. Our framework delivers a comprehensive, containerized evaluation pipeline that enables reproducible differential assessment, where repair success requires the original exploit to fail execution against the modified code. The benchmark construction involved extensive data curation: we processed over 400 CVEs and approximately 2,500 potential sources to extract a collection of authentic vulnerability instances (23 Python CVEs) amenable to automated testing with working PoCs. Through VulnRepairEval, we conduct a comprehensive evaluation of 12 popular LLMs and observe a significant performance deficit: even the top-performing model successfully addresses merely 5/23 instances (about 21.7%), exposing critical weaknesses in security-focused applications. Our failure analysis reveals that most unsuccessful attempts stem from imprecise vulnerability identification and patches containing syntactic or semantic errors. Enhanced prompting strategies and multi-agent approaches yield minimal improvements, with overall effectiveness remaining largely unaffected. This work contributes a stringent, practical evaluation framework for LLM-driven vulnerability remediation and underscores the necessity for assessment protocols that authentically reflect real-world exploitation scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube