Bayesian Additive Regression Trees for functional ANOVA model (2509.03317v1)
Abstract: Bayesian Additive Regression Trees (BART) is a powerful statistical model that leverages the strengths of Bayesian inference and regression trees. It has received significant attention for capturing complex non-linear relationships and interactions among predictors. However, the accuracy of BART often comes at the cost of interpretability. To address this limitation, we propose ANOVA Bayesian Additive Regression Trees (ANOVA-BART), a novel extension of BART based on the functional ANOVA decomposition, which is used to decompose the variability of a function into different interactions, each representing the contribution of a different set of covariates or factors. Our proposed ANOVA-BART enhances interpretability, preserves and extends the theoretical guarantees of BART, and achieves superior predictive performance. Specifically, we establish that the posterior concentration rate of ANOVA-BART is nearly minimax optimal, and further provides the same convergence rates for each interaction that are not available for BART. Moreover, comprehensive experiments confirm that ANOVA-BART surpasses BART in both accuracy and uncertainty quantification, while also demonstrating its effectiveness in component selection. These results suggest that ANOVA-BART offers a compelling alternative to BART by balancing predictive accuracy, interpretability, and theoretical consistency.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.