Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Unsupervised Learning based Element Resource Allocation for Reconfigurable Intelligent Surfaces in mmWave Network (2509.03241v1)

Published 3 Sep 2025 in cs.LG

Abstract: The increasing demand for high data rates and seamless connectivity in wireless systems has sparked significant interest in reconfigurable intelligent surfaces (RIS) and artificial intelligence-based wireless applications. RIS typically comprises passive reflective antenna elements that control the wireless propagation environment by adequately tuning the phase of the reflective elements. The allocation of RIS elements to multipleuser equipment (UEs) is crucial for efficiently utilizing RIS. In this work, we formulate a joint optimization problem that optimizes the RIS phase configuration and resource allocation under an $\alpha$-fair scheduling framework and propose an efficient way of allocating RIS elements. Conventional iterative optimization methods, however, suffer from exponentially increasing computational complexity as the number of RIS elements increases and also complicate the generation of training labels for supervised learning. To overcome these challenges, we propose a five-layer fully connected neural network (FNN) combined with a preprocessing technique to significantly reduce input dimensionality, lower computational complexity, and enhance scalability. The simulation results show that our proposed NN-based solution reduces computational overhead while significantly improving system throughput by 6.8% compared to existing RIS element allocation schemes. Furthermore, the proposed system achieves better performance while reducing computational complexity, making it significantly more scalable than the iterative optimization algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.