Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Domain Adaptation of LLMs for Process Data (2509.03161v1)

Published 3 Sep 2025 in cs.CL and cs.AI

Abstract: In recent years, LLMs have emerged as a prominent area of interest across various research domains, including Process Mining (PM). Current applications in PM have predominantly centered on prompt engineering strategies or the transformation of event logs into narrative-style datasets, thereby exploiting the semantic capabilities of LLMs to address diverse tasks. In contrast, this study investigates the direct adaptation of pretrained LLMs to process data without natural language reformulation, motivated by the fact that these models excel in generating sequences of tokens, similar to the objective in PM. More specifically, we focus on parameter-efficient fine-tuning techniques to mitigate the computational overhead typically associated with such models. Our experimental setup focuses on Predictive Process Monitoring (PPM), and considers both single- and multi-task predictions. The results demonstrate a potential improvement in predictive performance over state-of-the-art recurrent neural network (RNN) approaches and recent narrative-style-based solutions, particularly in the multi-task setting. Additionally, our fine-tuned models exhibit faster convergence and require significantly less hyperparameter optimization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.