Adaptive KV-Cache Compression without Manually Setting Budget (2509.03136v1)
Abstract: LLMs inference relies heavily on KV-caches to accelerate autoregressive decoding, but the resulting memory footprint grows rapidly with sequence length, posing significant efficiency challenges. Current KV-cache compression methods suffer from a Procrustes' bed problem: they force diverse workloads into fixed compression ratios, leading to suboptimal resource allocation and inference performance. To this end, we present GVote, an adaptive KV-cache compression scheme that eliminates manual budget specification while achieving superior accuracy-efficiency trade-offs. GVote operates on the principle that the important keys are the aggregation of keys required by future queries. The method predicts future query attention demands by Monte-Carlo style sampling potential queries and aggregating selected keys to determine the optimal cache budget without manual specification. Experimental evaluation demonstrates GVote's effectiveness across multiple benchmarks, including GSM8K, RULER and Longbench. Compared to baselines, GVote exhibits 2$\times$ memory reduction while the accuracy maintains higher or comparable.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.