Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

English Pronunciation Evaluation without Complex Joint Training: LoRA Fine-tuned Speech Multimodal LLM (2509.02915v1)

Published 3 Sep 2025 in cs.CL

Abstract: This study demonstrates that a Multimodal LLM (MLLM) adapted via Low-Rank Adaptation (LoRA) can perform both Automatic Pronunciation Assessment (APA) and Mispronunciation Detection and Diagnosis (MDD) simultaneously. Leveraging Microsoft's Phi-4-multimodal-instruct, our fine-tuning method eliminates the need for complex architectural changes or separate training procedures conventionally required for these distinct tasks. Fine-tuned on the Speechocean762 dataset, the pronunciation evaluation scores predicted by the model exhibited a strong Pearson Correlation Coefficient (PCC > 0.7) with human-assigned scores, while achieving low Word Error Rate (WER) and Phoneme Error Rate (PER) (both < 0.15). Notably, fine-tuning only the LoRA layers was sufficient to achieve performance levels comparable to those achieved by fine-tuning all audio layers. This research highlights that an integrated pronunciation assessment system can be established by adapting large multimodal models without full fine-tuning, utilizing a significantly simpler training methodology compared to previous joint models designed for simultaneous APA and MDD. This efficient LoRA-based approach paves the way for more accessible, integrated, and effective Computer-Assisted Pronunciation Training (CAPT) technologies for English L2 learners.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube