Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rollout-Based Approximate Dynamic Programming for MDPs with Information-Theoretic Constraints (2509.02812v1)

Published 2 Sep 2025 in eess.SY, cs.IT, cs.SY, and math.IT

Abstract: This paper studies a finite-horizon Markov decision problem with information-theoretic constraints, where the goal is to minimize directed information from the controlled source process to the control process, subject to stage-wise cost constraints, aiming for an optimal control policy. We propose a new way of approximating a solution for this problem, which is known to be formulated as an unconstrained MDP with a continuous information-state using Q-factors. To avoid the computational complexity of discretizing the continuous information-state space, we propose a truncated rollout-based backward-forward approximate dynamic programming (ADP) framework. Our approach consists of two phases: an offline base policy approximation over a shorter time horizon, followed by an online rollout lookahead minimization, both supported by provable convergence guarantees. We supplement our theoretical results with a numerical example where we demonstrate the cost improvement of the rollout method compared to a previously proposed policy approximation method, and the computational complexity observed in executing the offline and online phases for the two methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube