Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Two-Stage Strategy for Mitosis Detection Using Improved YOLO11x Proposals and ConvNeXt Classification (2509.02627v1)

Published 1 Sep 2025 in eess.IV and cs.AI

Abstract: MIDOG 2025 Track 1 requires mitosis detection in whole-slide images (WSIs) containing non-tumor, inflamed, and necrotic regions. Due to the complicated and heterogeneous context, as well as possible artifacts, there are often false positives and false negatives, thus degrading the detection F1-score. To address this problem, we propose a two-stage framework. Firstly, an improved YOLO11x, integrated with EMA attention and LSConv, is employed to generate mitosis candidates. We use a low confidence threshold to generate as many proposals as possible, ensuring the detection recall. Then, a ConvNeXt-Tiny classifier is employed to filter out the false positives, ensuring the detection precision. Consequently, the proposed two-stage framework can generate a high detection F1-score. Evaluated on a fused dataset comprising MIDOG++, MITOS_WSI_CCMCT, and MITOS_WSI_CMC, our framework achieves an F1-score of 0.882, which is 0.035 higher than the single-stage YOLO11x baseline. This performance gain is produced by a significant precision improvement, from 0.762 to 0.839, and a comparable recall. The code is available at https://github.com/xxiao0304/MIDOG-2025-Track-1-of-SZTU.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.