Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reusing Samples in Variance Reduction (2509.02526v1)

Published 2 Sep 2025 in cs.DS and math.OC

Abstract: We provide a general framework to improve trade-offs between the number of full batch and sample queries used to solve structured optimization problems. Our results apply to a broad class of randomized optimization algorithms that iteratively solve sub-problems to high accuracy. We show that such algorithms can be modified to reuse the randomness used to query the input across sub-problems. Consequently, we improve the trade-off between the number of gradient (full batch) and individual function (sample) queries for finite sum minimization, the number of matrix-vector multiplies (full batch) and random row (sample) queries for top-eigenvector computation, and the number of matrix-vector multiplies with the transition matrix (full batch) and generative model (sample) queries for optimizing Markov Decision Processes. To facilitate our analysis we introduce the notion of pseudo-independent algorithms, a generalization of pseudo-deterministic algorithms [Gat and Goldwasser 2011], that quantifies how independent the output of a randomized algorithm is from a randomness source.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

alphaXiv

  1. Reusing Samples in Variance Reduction (10 likes, 0 questions)