Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Balanced Multimodal Learning: An Unidirectional Dynamic Interaction Perspective (2509.02281v2)

Published 2 Sep 2025 in cs.LG and cs.MM

Abstract: Multimodal learning typically utilizes multimodal joint loss to integrate different modalities and enhance model performance. However, this joint learning strategy can induce modality imbalance, where strong modalities overwhelm weaker ones and limit exploitation of individual information from each modality and the inter-modality interaction information. Existing strategies such as dynamic loss weighting, auxiliary objectives and gradient modulation mitigate modality imbalance based on joint loss. These methods remain fundamentally reactive, detecting and correcting imbalance after it arises, while leaving the competitive nature of the joint loss untouched. This limitation drives us to explore a new strategy for multimodal imbalance learning that does not rely on the joint loss, enabling more effective interactions between modalities and better utilization of information from individual modalities and their interactions. In this paper, we introduce Unidirectional Dynamic Interaction (UDI), a novel strategy that abandons the conventional joint loss in favor of a proactive, sequential training scheme. UDI first trains the anchor modality to convergence, then uses its learned representations to guide the other modality via unsupervised loss. Furthermore, the dynamic adjustment of modality interactions allows the model to adapt to the task at hand, ensuring that each modality contributes optimally. By decoupling modality optimization and enabling directed information flow, UDI prevents domination by any single modality and fosters effective cross-modal feature learning. Our experimental results demonstrate that UDI outperforms existing methods in handling modality imbalance, leading to performance improvement in multimodal learning tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube