Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Amputation-imputation based generation of synthetic tabular data for ratemaking (2509.02171v1)

Published 2 Sep 2025 in stat.ML, cs.LG, and stat.AP

Abstract: Actuarial ratemaking depends on high-quality data, yet access to such data is often limited by the cost of obtaining new data, privacy concerns, etc. In this paper, we explore synthetic-data generation as a potential solution to these issues. In addition to discussing generative methods previously studied in the actuarial literature, we introduce to the insurance community another approach based on Multiple Imputation by Chained Equations (MICE). We present a comparative study using an open-source dataset and evaluating MICE-based models against other generative models like Variational Autoencoders and Conditional Tabular Generative Adversarial Networks. We assess how well synthetic data preserves the original marginal distributions of variables as well as the multivariate relationships among covariates. We also investigate the consistency between Generalized Linear Models (GLMs) trained on synthetic data with GLMs trained on the original data. Furthermore, we assess the ease of use of each generative approach and study the impact of augmenting original data with synthetic data on the performance of GLMs for predicting claim counts. Our results highlight the potential of MICE-based methods in creating high-quality tabular data while being more user-friendly than the other methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube