Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Better by Comparison: Retrieval-Augmented Contrastive Reasoning for Automatic Prompt Optimization (2509.02093v1)

Published 2 Sep 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Automatic prompt optimization has recently emerged as a strategy for improving the quality of prompts used in LLMs, with the goal of generating more accurate and useful responses. However, most prior work focuses on direct prompt refinement or model fine-tuning, overlooking the potential of leveraging LLMs' inherent reasoning capability to learn from contrasting examples. In this paper, we present Contrastive Reasoning Prompt Optimization (CRPO), a novel framework that formulates prompt optimization as a retrieval augmented reasoning process. Our approach retrieves top k reference prompts from the HelpSteer2 dataset, an open-source collection annotated for helpfulness, correctness, coherence, complexity, and verbosity, and constructs two complementary optimization paradigms: (1) tiered contrastive reasoning, where the LLM compares high, medium, and low quality prompts to refine its own generation through reflective reasoning, and (2) multi-metric contrastive reasoning, where the LLM analyzes the best prompts along each evaluation dimension and integrates their strengths into an optimized prompt. By explicitly contrasting high and low quality exemplars, CRPO enables the model to deduce why certain prompts succeed while others fail, thereby achieving more robust and interpretable optimization. Experimental results on the HelpSteer2 benchmark demonstrate that CRPO significantly outperforms baselines. Our findings highlight the promise of contrastive, retrieval-augmented reasoning for advancing automatic prompt optimization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.