Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Toward a Unified Benchmark and Taxonomy of Stochastic Environments (2509.01793v1)

Published 1 Sep 2025 in cs.LG and cs.AI

Abstract: Reinforcement Learning (RL) agents have achieved strong results on benchmarks such as Atari100k, yet they remain limited in robustness to real-world conditions. Model-Based RL approaches that rely on learned World Models often struggle in environments with true stochasticity and partial observability, despite their theoretical grounding in POMDPs. Current benchmarks rarely capture these challenges, focusing instead on deterministic or overly simplified settings, and the lack of a clear taxonomy of stochasticity further hampers systematic evaluation. To address this gap, we introduce STORI (STOchastic-ataRI), a benchmark that incorporates diverse stochastic effects and enables rigorous assessment of RL methods under varied forms of uncertainty. In addition, we propose a taxonomy of stochasticity in RL environments, providing a unified framework for analyzing and comparing approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.