Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

An intrusion detection system in internet of things using grasshopper optimization algorithm and machine learning algorithms (2509.01724v1)

Published 1 Sep 2025 in math.OC, cs.CR, cs.SY, and eess.SY

Abstract: The Internet of Things (IoT) has emerged as a foundational paradigm supporting a range of applications, including healthcare, education, agriculture, smart homes, and, more recently, enterprise systems. However, significant advancements in IoT networks have been impeded by security vulnerabilities and threats that, if left unaddressed, could hinder the deployment and operation of IoT based systems. Detecting unwanted activities within the IoT is crucial, as it directly impacts confidentiality, integrity, and availability. Consequently, intrusion detection has become a fundamental research area and the focus of numerous studies. An intrusion detection system (IDS) is essential to the IoTs alarm mechanisms, enabling effective security management. This paper examines IoT security and introduces an intelligent two-layer intrusion detection system for IoT. Machine learning techniques power the system's intelligence, with a two layer structure enhancing intrusion detection. By selecting essential features, the system maintains detection accuracy while minimizing processing overhead. The proposed method for intrusion detection in IoT is implemented in two phases. In the first phase, the Grasshopper Optimization Algorithm (GOA) is applied for feature selection. In the second phase, the Support Vector Machine (SVM) algorithm is used to detect intrusions. The method was implemented in MATLAB, and the NSLKDD dataset was used for evaluation. Simulation results show that the proposed method improves accuracy compared to other approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.