Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Preconditioned Regularized Wasserstein Proximal Sampling (2509.01685v1)

Published 1 Sep 2025 in stat.ML, cs.LG, math.OC, and stat.CO

Abstract: We consider sampling from a Gibbs distribution by evolving finitely many particles. We propose a preconditioned version of a recently proposed noise-free sampling method, governed by approximating the score function with the numerically tractable score of a regularized Wasserstein proximal operator. This is derived by a Cole--Hopf transformation on coupled anisotropic heat equations, yielding a kernel formulation for the preconditioned regularized Wasserstein proximal. The diffusion component of the proposed method is also interpreted as a modified self-attention block, as in transformer architectures. For quadratic potentials, we provide a discrete-time non-asymptotic convergence analysis and explicitly characterize the bias, which is dependent on regularization and independent of step-size. Experiments demonstrate acceleration and particle-level stability on various log-concave and non-log-concave toy examples to Bayesian total-variation regularized image deconvolution, and competitive/better performance on non-convex Bayesian neural network training when utilizing variable preconditioning matrices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets