Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

On the Estimation of Multinomial Logit and Nested Logit Models: A Conic Optimization Approach (2509.01562v1)

Published 1 Sep 2025 in econ.EM and math.OC

Abstract: In this paper, we revisit parameter estimation for multinomial logit (MNL), nested logit (NL), and tree-nested logit (TNL) models through the framework of convex conic optimization. Traditional approaches typically solve the maximum likelihood estimation (MLE) problem using gradient-based methods, which are sensitive to step-size selection and initialization, and may therefore suffer from slow or unstable convergence. In contrast, we propose a novel estimation strategy that reformulates these models as conic optimization problems, enabling more robust and reliable estimation procedures. Specifically, we show that the MLE for MNL admits an equivalent exponential cone program (ECP). For NL and TNL, we prove that when the dissimilarity (scale) parameters are fixed, the estimation problem is convex and likewise reducible to an ECP. Leveraging these results, we design a two-stage procedure: an outer loop that updates the scale parameters and an inner loop that solves the ECP to update the utility coefficients. The inner problems are handled by interior-point methods with iteration counts that grow only logarithmically in the target accuracy, as implemented in off-the-shelf solvers (e.g., MOSEK). Extensive experiments across estimation instances of varying size show that our conic approach attains better MLE solutions, greater robustness to initialization, and substantial speedups compared to standard gradient-based MLE, particularly on large-scale instances with high-dimensional specifications and large choice sets. Our findings establish exponential cone programming as a practical and scalable alternative for estimating a broad class of discrete choice models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.