Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

MetaSSL: A General Heterogeneous Loss for Semi-Supervised Medical Image Segmentation (2509.01144v1)

Published 1 Sep 2025 in cs.CV

Abstract: Semi-Supervised Learning (SSL) is important for reducing the annotation cost for medical image segmentation models. State-of-the-art SSL methods such as Mean Teacher, FixMatch and Cross Pseudo Supervision (CPS) are mainly based on consistency regularization or pseudo-label supervision between a reference prediction and a supervised prediction. Despite the effectiveness, they have overlooked the potential noise in the labeled data, and mainly focus on strategies to generate the reference prediction, while ignoring the heterogeneous values of different unlabeled pixels. We argue that effectively mining the rich information contained by the two predictions in the loss function, instead of the specific strategy to obtain a reference prediction, is more essential for SSL, and propose a universal framework MetaSSL based on a spatially heterogeneous loss that assigns different weights to pixels by simultaneously leveraging the uncertainty and consistency information between the reference and supervised predictions. Specifically, we split the predictions on unlabeled data into four regions with decreasing weights in the loss: Unanimous and Confident (UC), Unanimous and Suspicious (US), Discrepant and Confident (DC), and Discrepant and Suspicious (DS), where an adaptive threshold is proposed to distinguish confident predictions from suspicious ones. The heterogeneous loss is also applied to labeled images for robust learning considering the potential annotation noise. Our method is plug-and-play and general to most existing SSL methods. The experimental results showed that it improved the segmentation performance significantly when integrated with existing SSL frameworks on different datasets. Code is available at https://github.com/HiLab-git/MetaSSL.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com