Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Speech Command Recognition Using LogNNet Reservoir Computing for Embedded Systems (2509.00862v1)

Published 31 Aug 2025 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: This paper presents a low-resource speech-command recognizer combining energy-based voice activity detection (VAD), an optimized Mel-Frequency Cepstral Coefficients (MFCC) pipeline, and the LogNNet reservoir-computing classifier. Using four commands from the Speech Commands da-taset downsampled to 8 kHz, we evaluate four MFCC aggregation schemes and find that adaptive binning (64-dimensional feature vector) offers the best accuracy-to-compactness trade-off. The LogNNet classifier with architecture 64:33:9:4 reaches 92.04% accuracy under speaker-independent evaluation, while requiring significantly fewer parameters than conventional deep learn-ing models. Hardware implementation on Arduino Nano 33 IoT (ARM Cor-tex-M0+, 48 MHz, 32 KB RAM) validates the practical feasibility, achieving ~90% real-time recognition accuracy while consuming only 18 KB RAM (55% utilization). The complete pipeline (VAD -> MFCC -> LogNNet) thus enables reliable on-device speech-command recognition under strict memory and compute limits, making it suitable for battery-powered IoT nodes, wire-less sensor networks, and hands-free control interfaces.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube