It's-A-Me, Quantum Mario: Scalable Quantum Reinforcement Learning with Multi-Chip Ensembles (2509.00713v1)
Abstract: Quantum reinforcement learning (QRL) promises compact function approximators with access to vast Hilbert spaces, but its practical progress is slowed by NISQ-era constraints such as limited qubits and noise accumulation. We introduce a multi-chip ensemble framework using multiple small Quantum Convolutional Neural Networks (QCNNs) to overcome these constraints. Our approach partitions complex, high-dimensional observations from the Super Mario Bros environment across independent quantum circuits, then classically aggregates their outputs within a Double Deep Q-Network (DDQN) framework. This modular architecture enables QRL in complex environments previously inaccessible to quantum agents, achieving superior performance and learning stability compared to classical baselines and single-chip quantum models. The multi-chip ensemble demonstrates enhanced scalability by reducing information loss from dimensionality reduction while remaining implementable on near-term quantum hardware, providing a practical pathway for applying QRL to real-world problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.