Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Mean-payoff and Energy Discrete Bidding Games (2509.00506v1)

Published 30 Aug 2025 in cs.GT, cs.FL, and cs.MA

Abstract: A \emph{bidding} game is played on a graph as follows. A token is placed on an initial vertex and both players are allocated budgets. In each turn, the players simultaneously submit bids that do not exceed their available budgets, the higher bidder moves the token, and pays the bid to the lower bidder. We focus on \emph{discrete}-bidding, which are motivated by practical applications and restrict the granularity of the players' bids, e.g, bids must be given in cents. We study, for the first time, discrete-bidding games with {\em mean-payoff} and {\em energy} objectives. In contrast, mean-payoff {\em continuous}-bidding games (i.e., no granularity restrictions) are understood and exhibit a rich mathematical structure. The {\em threshold} budget is a necessary and sufficient initial budget for winning an energy game or guaranteeing a target payoff in a mean-payoff game. We first establish existence of threshold budgets; a non-trivial property due to the concurrent moves of the players. Moreover, we identify the structure of the thresholds, which is key in obtaining compact strategies, and in turn, showing that finding threshold is in \NP~and \coNP even in succinctly-represented games.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube