Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Robust MCVaR Portfolio Optimization with Ellipsoidal Support and Reproducing Kernel Hilbert Space-based Uncertainty (2509.00447v1)

Published 30 Aug 2025 in q-fin.PM

Abstract: This study introduces a portfolio optimization framework to minimize mixed conditional value at risk (MCVaR), incorporating a chance constraint on expected returns and limiting the number of assets via cardinality constraints. A robust MCVaR model is presented, which presumes ellipsoidal support for random returns without assuming any distribution. The model utilizes an uncertainty set grounded in a reproducing kernel Hilbert space (RKHS) to manage the chance constraint, resulting in a simplified second-order cone programming (SOCP) formulation. The performance of the robust model is tested on datasets from six distinct financial markets. The outcomes of comprehensive experiments indicate that the robust model surpasses the nominal model, market portfolio, and equal-weight portfolio with higher expected returns, lower risk metrics, enhanced reward-risk ratios, and a better value of Jensen's alpha in many cases. Furthermore, we aim to validate the robust models in different market phases (bullish, bearish, and neutral). The robust model shows a distinct advantage in bear markets, providing better risk protection against adverse conditions. In contrast, its performance in bullish and neutral phases is somewhat similar to that of the nominal model. The robust model appears effective in volatile markets, although further research is necessary to comprehend its performance across different market conditions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube