Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

The Resurgence of GCG Adversarial Attacks on Large Language Models (2509.00391v1)

Published 30 Aug 2025 in cs.CL, cs.AI, cs.CR, and cs.LG

Abstract: Gradient-based adversarial prompting, such as the Greedy Coordinate Gradient (GCG) algorithm, has emerged as a powerful method for jailbreaking LLMs. In this paper, we present a systematic appraisal of GCG and its annealing-augmented variant, T-GCG, across open-source LLMs of varying scales. Using Qwen2.5-0.5B, LLaMA-3.2-1B, and GPT-OSS-20B, we evaluate attack effectiveness on both safety-oriented prompts (AdvBench) and reasoning-intensive coding prompts. Our study reveals three key findings: (1) attack success rates (ASR) decrease with model size, reflecting the increasing complexity and non-convexity of larger models' loss landscapes; (2) prefix-based heuristics substantially overestimate attack effectiveness compared to GPT-4o semantic judgments, which provide a stricter and more realistic evaluation; and (3) coding-related prompts are significantly more vulnerable than adversarial safety prompts, suggesting that reasoning itself can be exploited as an attack vector. In addition, preliminary results with T-GCG show that simulated annealing can diversify adversarial search and achieve competitive ASR under prefix evaluation, though its benefits under semantic judgment remain limited. Together, these findings highlight the scalability limits of GCG, expose overlooked vulnerabilities in reasoning tasks, and motivate further development of annealing-inspired strategies for more robust adversarial evaluation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube