Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Theory Foundation of Physics-Enhanced Residual Learning (2509.00348v1)

Published 30 Aug 2025 in cs.LG and cs.AI

Abstract: Intensive studies have been conducted in recent years to integrate neural networks with physics models to balance model accuracy and interpretability. One recently proposed approach, named Physics-Enhanced Residual Learning (PERL), is to use learning to estimate the residual between the physics model prediction and the ground truth. Numeral examples suggested that integrating such residual with physics models in PERL has three advantages: (1) a reduction in the number of required neural network parameters; (2) faster convergence rates; and (3) fewer training samples needed for the same computational precision. However, these numerical results lack theoretical justification and cannot be adequately explained. This paper aims to explain these advantages of PERL from a theoretical perspective. We investigate a general class of problems with Lipschitz continuity properties. By examining the relationships between the bounds to the loss function and residual learning structure, this study rigorously proves a set of theorems explaining the three advantages of PERL. Several numerical examples in the context of automated vehicle trajectory prediction are conducted to illustrate the proposed theorems. The results confirm that, even with significantly fewer training samples, PERL consistently achieves higher accuracy than a pure neural network. These results demonstrate the practical value of PERL in real world autonomous driving applications where corner case data are costly or hard to obtain. PERL therefore improves predictive performance while reducing the amount of data required.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.