Deep Complex-valued Neural-Network Modeling and Optimization of Stacked Intelligent Surfaces (2509.00340v1)
Abstract: We propose a complex-valued neural-network (CV-NN) framework to optimally configure stacked intelligent surfaces (SIS) in next-generation multi-antenna systems. Unlike conventional solutions that separately tune analog metasurface phases or rely strictly on SVD-based orthogonal decompositions, our method models each SIS element as a unit-modulus complex-velued neuron in an end-to-end differentiable pipeline. This approach avoids enforcing channel orthogonality and instead allows for richer wavefront designs that can target a wide range of system objectives, such as maximizing spectral efficiency and minimizing detection errors, all within a single optimization framework. Moreover, by exploiting a fully differentiable neural-network formulation and GPU-based auto-differentiation, our approach can rapidly train SIS configurations for realistic, high-dimensional channels, enabling near-online adaptation. Our framework also naturally accommodates hybrid analog-digital beamforming and recovers classical SVD solutions as a special case. Numerical evaluations under Rician channels demonstrate that CV-NN SIS optimization outperforms state-of-the-art schemes in throughput, error performance, and robustness to channel variation, opening the door to more flexible and powerful wave-domain control for future 6G networks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.