Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Counterfactual Risk Minimization with IPS-Weighted BPR and Self-Normalized Evaluation in Recommender Systems (2509.00333v1)

Published 30 Aug 2025 in cs.LG

Abstract: Learning and evaluating recommender systems from logged implicit feedback is challenging due to exposure bias. While inverse propensity scoring (IPS) corrects this bias, it often suffers from high variance and instability. In this paper, we present a simple and effective pipeline that integrates IPS-weighted training with an IPS-weighted Bayesian Personalized Ranking (BPR) objective augmented by a Propensity Regularizer (PR). We compare Direct Method (DM), IPS, and Self-Normalized IPS (SNIPS) for offline policy evaluation, and demonstrate how IPS-weighted training improves model robustness under biased exposure. The proposed PR further mitigates variance amplification from extreme propensity weights, leading to more stable estimates. Experiments on synthetic and MovieLens 100K data show that our approach generalizes better under unbiased exposure while reducing evaluation variance compared to naive and standard IPS methods, offering practical guidance for counterfactual learning and evaluation in real-world recommendation settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube