Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Algorithm Adaptation Bias in Recommendation System Online Experiments (2509.00199v1)

Published 29 Aug 2025 in cs.IR and cs.LG

Abstract: Online experiments (A/B tests) are widely regarded as the gold standard for evaluating recommender system variants and guiding launch decisions. However, a variety of biases can distort the results of the experiment and mislead decision-making. An underexplored but critical bias is algorithm adaptation effect. This bias arises from the flywheel dynamics among production models, user data, and training pipelines: new models are evaluated on user data whose distributions are shaped by the incumbent system or tested only in a small treatment group. As a result, the measured effect of a new product change in modeling and user experience in this constrained experimental setting can diverge substantially from its true impact in full deployment. In practice, the experiment results often favor the production variant with large traffic while underestimating the performance of the test variant with small traffic, which leads to missing opportunities to launch a true winning arm or underestimating the impact. This paper aims to raise awareness of algorithm adaptation bias, situate it within the broader landscape of RecSys evaluation biases, and motivate discussion of solutions that span experiment design, measurement, and adjustment. We detail the mechanisms of this bias, present empirical evidence from real-world experiments, and discuss potential methods for a more robust online evaluation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com