QoS-Aware Proportional Fairness Scheduling for Multi-Flow 5G UEs: A Smart Factory Perspective (2508.21783v1)
Abstract: Private 5G networks are emerging as key enablers for smart factories, where a single device often handles multiple concurrent traffic flows with distinct Quality of Service (QoS) requirements. Existing simulation frameworks, however, lack the fidelity to model such multi-flow behavior at the QoS Flow Identifier (QFI) level. This paper addresses this gap by extending Simu5G to support per-QFI modeling and by introducing a novel QoS-aware Proportional Fairness (QoS-PF) scheduler. The scheduler dynamically balances delay, Guaranteed Bit Rate (GBR), and priority metrics to optimize resource allocation across heterogeneous flows. We evaluate the proposed approach in a realistic smart factory scenario featuring edge-hosted machine vision, real-time control loops, and bulk data transfer. Results show that QoS-PF improves deadline adherence and fairness without compromising throughput. All extensions are implemented in a modular and open-source manner to support future research. Our work provides both a methodological and architectural foundation for simulating and analyzing advanced QoS policies in industrial 5G deployments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.