Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Weighted Support Points from Random Measures: An Interpretable Alternative for Generative Modeling (2508.21255v1)

Published 28 Aug 2025 in stat.ML and cs.LG

Abstract: Support points summarize a large dataset through a smaller set of representative points that can be used for data operations, such as Monte Carlo integration, without requiring access to the full dataset. In this sense, support points offer a compact yet informative representation of the original data. We build on this idea to introduce a generative modeling framework based on random weighted support points, where the randomness arises from a weighting scheme inspired by the Dirichlet process and the Bayesian bootstrap. The proposed method generates diverse and interpretable sample sets from a fixed dataset, without relying on probabilistic modeling assumptions or neural network architectures. We present the theoretical formulation of the method and develop an efficient optimization algorithm based on the Convex--Concave Procedure (CCP). Empirical results on the MNIST and CelebA-HQ datasets show that our approach produces high-quality and diverse outputs at a fraction of the computational cost of black-box alternatives such as Generative Adversarial Networks (GANs) or Denoising Diffusion Probabilistic Models (DDPMs). These results suggest that random weighted support points offer a principled, scalable, and interpretable alternative for generative modeling. A key feature is their ability to produce genuinely interpolative samples that preserve underlying data structure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets