Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Quantum-inspired probability metrics define a complete, universal space for statistical learning (2508.21086v1)

Published 26 Aug 2025 in stat.ML, cs.LG, and quant-ph

Abstract: Comparing probability distributions is a core challenge across the natural, social, and computational sciences. Existing methods, such as Maximum Mean Discrepancy (MMD), struggle in high-dimensional and non-compact domains. Here we introduce quantum probability metrics (QPMs), derived by embedding probability measures in the space of quantum states: positive, unit-trace operators on a Hilbert space. This construction extends kernel-based methods and overcomes the incompleteness of MMD on non-compact spaces. Viewed as an integral probability metric (IPM), QPMs have dual functions that uniformly approximate all bounded, uniformly continuous functions on $\mathbb{R}n$, offering enhanced sensitivity to subtle distributional differences in high dimensions. For empirical distributions, QPMs are readily calculated using eigenvalue methods, with analytic gradients suited for learning and optimization. Although computationally more intensive for large sample sizes ($O(n3)$ vs. $O(n2)$), QPMs can significantly improve performance as a drop-in replacement for MMD, as demonstrated in a classic generative modeling task. By combining the rich mathematical framework of quantum mechanics with classical probability theory, this approach lays the foundation for powerful tools to analyze and manipulate probability measures.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets