Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A multi-task neural network for atypical mitosis recognition under domain shift (2508.21035v1)

Published 28 Aug 2025 in cs.CV and eess.IV

Abstract: Recognizing atypical mitotic figures in histopathology images allows physicians to correctly assess tumor aggressiveness. Although machine learning models could be exploited for automatically performing such a task, under domain shift these models suffer from significative performance drops. In this work, an approach based on multi-task learning is proposed for addressing this problem. By exploiting auxiliary tasks, correlated to the main classification task, the proposed approach, submitted to the track 2 of the MItosis DOmain Generalization (MIDOG) challenge, aims to aid the model to focus only on the object to classify, ignoring the domain varying background of the image. The proposed approach shows promising performance in a preliminary evaluation conducted on three distinct datasets, i.e., the MIDOG 2025 Atypical Training Set, the Ami-Br dataset, as well as the preliminary test set of the MIDOG25 challenge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.