Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Mitosis detection in domain shift scenarios: a Mamba-based approach (2508.21033v1)

Published 28 Aug 2025 in cs.CV

Abstract: Mitosis detection in histopathology images plays a key role in tumor assessment. Although machine learning algorithms could be exploited for aiding physicians in accurately performing such a task, these algorithms suffer from significative performance drop when evaluated on images coming from domains that are different from the training ones. In this work, we propose a Mamba-based approach for mitosis detection under domain shift, inspired by the promising performance demonstrated by Mamba in medical imaging segmentation tasks. Specifically, our approach exploits a VM-UNet architecture for carrying out the addressed task, as well as stain augmentation operations for further improving model robustness against domain shift. Our approach has been submitted to the track 1 of the MItosis DOmain Generalization (MIDOG) challenge. Preliminary experiments, conducted on the MIDOG++ dataset, show large room for improvement for the proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.