Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ConfLogger: Enhance Systems' Configuration Diagnosability through Configuration Logging (2508.20977v1)

Published 28 Aug 2025 in cs.SE

Abstract: Modern configurable systems offer customization via intricate configuration spaces, yet such flexibility introduces pervasive configuration-related issues such as misconfigurations and latent softwarebugs. Existing diagnosability supports focus on post-failure analysis of software behavior to identify configuration issues, but none of these approaches look into whether the software clue sufficient failure information for diagnosis. To fill in the blank, we propose the idea of configuration logging to enhance existing logging practices at the source code level. We develop ConfLogger, the first tool that unifies configuration-aware static taint analysis with LLM-based log generation to enhance software configuration diagnosability. Specifically, our method 1) identifies configuration-sensitive code segments by tracing configuration-related data flow in the whole project, and 2) generates diagnostic log statements by analyzing configuration code contexts. Evaluation results on eight popular software systems demonstrate the effectiveness of ConfLogger to enhance configuration diagnosability. Specifically, ConfLogger-enhanced logs successfully aid a log-based misconfiguration diagnosis tool to achieve 100% accuracy on error localization in 30 silent misconfiguration scenarios, with 80% directly resolvable through explicit configuration information exposed. In addition, ConfLogger achieves 74% coverage of existing logging points, outperforming baseline LLM-based loggers by 12% and 30%. It also gains 8.6% higher in precision, 79.3% higher in recall, and 26.2% higher in F1 compared to the state-of-the-art baseline in terms of variable logging while also augmenting diagnostic value. A controlled user study on 22 cases further validated its utility, speeding up diagnostic time by 1.25x and improving troubleshooting accuracy by 251.4%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube