Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Classifying Mitotic Figures in the MIDOG25 Challenge with Deep Ensemble Learning and Rule Based Refinement (2508.20919v1)

Published 28 Aug 2025 in cs.CV

Abstract: Mitotic figures (MFs) are relevant biomarkers in tumor grading. Differentiating atypical MFs (AMFs) from normal MFs (NMFs) remains difficult, as manual annotation is time-consuming and subjective. In this work an ensemble of ConvNeXtBase models was trained with AUCMEDI and extend with a rule-based refinement (RBR) module. On the MIDOG25 preliminary test set, the ensemble achieved a balanced accuracy of 84.02%. While the RBR increased specificity, it reduced sensitivity and overall performance. The results show that deep ensembles perform well for AMF classification. RBR can increase specific metrics but requires further research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.