Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

More Reliable Pseudo-labels, Better Performance: A Generalized Approach to Single Positive Multi-label Learning (2508.20381v1)

Published 28 Aug 2025 in cs.CV

Abstract: Multi-label learning is a challenging computer vision task that requires assigning multiple categories to each image. However, fully annotating large-scale datasets is often impractical due to high costs and effort, motivating the study of learning from partially annotated data. In the extreme case of Single Positive Multi-Label Learning (SPML), each image is provided with only one positive label, while all other labels remain unannotated. Traditional SPML methods that treat missing labels as unknown or negative tend to yield inaccuracies and false negatives, and integrating various pseudo-labeling strategies can introduce additional noise. To address these challenges, we propose the Generalized Pseudo-Label Robust Loss (GPR Loss), a novel loss function that effectively learns from diverse pseudo-labels while mitigating noise. Complementing this, we introduce a simple yet effective Dynamic Augmented Multi-focus Pseudo-labeling (DAMP) technique. Together, these contributions form the Adaptive and Efficient Vision-Language Pseudo-Labeling (AEVLP) framework. Extensive experiments on four benchmark datasets demonstrate that our framework significantly advances multi-label classification, achieving state-of-the-art results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube