Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 31 tok/s Pro
GPT-4o 112 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 211 tok/s Pro
2000 character limit reached

Latent Factor Point Processes for Patient Representation in Electronic Health Records (2508.20327v1)

Published 28 Aug 2025 in stat.ME and stat.ML

Abstract: Electronic health records (EHR) contain valuable longitudinal patient-level information, yet most statistical methods reduce the irregular timing of EHR codes into simple counts, thereby discarding rich temporal structure. Existing temporal models often impose restrictive parametric assumptions or are tailored to code level rather than patient-level tasks. We propose the latent factor point process model, which represents code occurrences as a high-dimensional point process whose conditional intensity is driven by a low dimensional latent Poisson process. This low-rank structure reflects the clinical reality that thousands of codes are governed by a small number of underlying disease processes, while enabling statistically efficient estimation in high dimensions. Building on this model, we introduce the Fourier-Eigen embedding, a patient representation constructed from the spectral density matrix of the observed process. We establish theoretical guarantees showing that these embeddings efficiently capture subgroup-specific temporal patterns for downstream classification and clustering. Simulations and an application to an Alzheimer's disease EHR cohort demonstrate the practical advantages of our approach in uncovering clinically meaningful heterogeneity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets