Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

ArgRAG: Explainable Retrieval Augmented Generation using Quantitative Bipolar Argumentation (2508.20131v1)

Published 26 Aug 2025 in cs.AI and cs.LG

Abstract: Retrieval-Augmented Generation (RAG) enhances LLMs by incorporating external knowledge, yet suffers from critical limitations in high-stakes domains -- namely, sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We propose ArgRAG, an explainable, and contestable alternative that replaces black-box reasoning with structured inference using a Quantitative Bipolar Argumentation Framework (QBAF). ArgRAG constructs a QBAF from retrieved documents and performs deterministic reasoning under gradual semantics. This allows faithfully explaining and contesting decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, ArgRAG achieves strong accuracy while significantly improving transparency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets