Dynamic Delegation with Reputation Feedback (2508.19676v1)
Abstract: We study dynamic delegation with reputation feedback: a long-lived expert advises a sequence of implementers whose effort responds to current reputation, altering outcome informativeness and belief updates. We solve for a recursive, belief-based equilibrium and show that advice is a reputation-dependent cutoff in the expert's signal. A diagnosticity condition - failures at least as informative as successes - implies reputational conservatism: the cutoff (weakly) rises with reputation. Comparative statics are transparent: greater private precision or a higher good-state prior lowers the cutoff, whereas patience (value curvature) raises it. Reputation is a submartingale under competent types and a supermartingale under less competent types; we separate boundary hitting into learning (news generated infinitely often) versus no-news absorption. A success-contingent bonus implements any target experimentation rate with a plug-in calibration in a Gaussian benchmark. The framework yields testable predictions and a measurement map for surgery (operate vs. conservative care).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.