Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Support Vector Machines Classification on Bendable RISC-V (2508.19656v1)

Published 27 Aug 2025 in cs.AR

Abstract: Flexible Electronics (FE) technology offers uniquecharacteristics in electronic manufacturing, providing ultra-low-cost, lightweight, and environmentally-friendly alternatives totraditional rigid electronics. These characteristics enable a rangeof applications that were previously constrained by the costand rigidity of conventional silicon technology. Machine learning (ML) is essential for enabling autonomous, real-time intelligenceon devices with smart sensing capabilities in everyday objects. However, the large feature sizes and high power consumption ofthe devices oppose a challenge in the realization of flexible ML applications. To address the above, we propose an open-source framework for developing ML co-processors for the Bendable RISC-V core. In addition, we present a custom ML accelerator architecture for Support Vector Machine (SVM), supporting both one-vs-one (OvO) and one-vs-rest (OvR) algorithms. Our ML accelerator adopts a generic, precision-scalable design, supporting 4-, 8-, and 16-bit weight representations. Experimental results demonstrate a 21x improvement in both inference execution time and energy efficiency, on average, highlighting its potential for low-power, flexible intelligence on the edge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.