Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

A Scenario-Oriented Survey of Federated Recommender Systems: Techniques, Challenges, and Future Directions (2508.19620v1)

Published 27 Aug 2025 in cs.IR, cs.AI, and cs.CR

Abstract: Extending recommender systems to federated learning (FL) frameworks to protect the privacy of users or platforms while making recommendations has recently gained widespread attention in academia. This is due to the natural coupling of recommender systems and federated learning architectures: the data originates from distributed clients (mostly mobile devices held by users), which are highly related to privacy. In a centralized recommender system (CenRec), the central server collects clients' data, trains the model, and provides the service. Whereas in federated recommender systems (FedRec), the step of data collecting is omitted, and the step of model training is offloaded to each client. The server only aggregates the model and other knowledge, thus avoiding client privacy leakage. Some surveys of federated recommender systems discuss and analyze related work from the perspective of designing FL systems. However, their utility drops by ignoring specific recommendation scenarios' unique characteristics and practical challenges. For example, the statistical heterogeneity issue in cross-domain FedRec originates from the label drift of the data held by different platforms, which is mainly caused by the recommender itself, but not the federated architecture. Therefore, it should focus more on solving specific problems in real-world recommendation scenarios to encourage the deployment FedRec. To this end, this review comprehensively analyzes the coupling of recommender systems and federated learning from the perspective of recommendation researchers and practitioners. We establish a clear link between recommendation scenarios and FL frameworks, systematically analyzing scenario-specific approaches, practical challenges, and potential opportunities. We aim to develop guidance for the real-world deployment of FedRec, bridging the gap between existing research and applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.