Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Towards Quantum Machine Learning for Malicious Code Analysis (2508.19381v1)

Published 26 Aug 2025 in cs.LG and cs.CR

Abstract: Classical machine learning (CML) has been extensively studied for malware classification. With the emergence of quantum computing, quantum machine learning (QML) presents a paradigm-shifting opportunity to improve malware detection, though its application in this domain remains largely unexplored. In this study, we investigate two hybrid quantum-classical models -- a Quantum Multilayer Perceptron (QMLP) and a Quantum Convolutional Neural Network (QCNN), for malware classification. Both models utilize angle embedding to encode malware features into quantum states. QMLP captures complex patterns through full qubit measurement and data re-uploading, while QCNN achieves faster training via quantum convolution and pooling layers that reduce active qubits. We evaluate both models on five widely used malware datasets -- API-Graph, EMBER-Domain, EMBER-Class, AZ-Domain, and AZ-Class, across binary and multiclass classification tasks. Our results show high accuracy for binary classification -- 95-96% on API-Graph, 91-92% on AZ-Domain, and 77% on EMBER-Domain. In multiclass settings, accuracy ranges from 91.6-95.7% on API-Graph, 41.7-93.6% on AZ-Class, and 60.7-88.1% on EMBER-Class. Overall, QMLP outperforms QCNN in complex multiclass tasks, while QCNN offers improved training efficiency at the cost of reduced accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets